A rigidity property of asymptotically simple spacetimes arising from conformally flat data

نویسنده

  • Juan Antonio Valiente Kroon
چکیده

Given a time symmetric initial data set for the vacuum Einstein field equations which is conformally flat near infinity, it is shown that the solutions to the regular finite initial value problem at spatial infinity extend smoothly through the critical sets where null infinity touches spatial infinity if and only if the initial data coincides with Schwarzschild data near infinity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Global Results for Asymptotically Simple Spacetimes

The aim of this paper is to present some rigidity results for asymptotically simple spacetimes. By a spacetime we mean a smooth connected time oriented Lorentzian manifold (M, g) of dimension ≥ 3, having signature (−+ · · ·+). We use standard notation for causal theoretic notions, e.g., for A ⊂ M , I(A,M), the timelike future of A in M (resp., I(A,M), the timelike past of A in M), is the set of...

متن کامل

Some recent results in linear scalar quantum field the - ory in globally hyperbolic asymptotically flat space - times

The content of this paper is that of an invited plenary talk at the XVII SIGRAV Conference held in Torino, September 4-7, 2006. Some recent results obtained by the author and collaborators about QFT in asymptotically flat spacetimes at null infinity are reviewed. In particular it is shown that bosonic QFT can be defined on the null boundary I of any asymptotically flat spacetime M . This theory...

متن کامل

Numerical Calculation of Conformally Smooth Hyperboloidal Data

This is the third paper in a series describing a numerical implementation of the conformal Einstein equation. This paper describes a scheme to calculate (three) dimensional data for the conformal field equations from a set of free functions. The actual implementation depends on the topology of the spacetime. We discuss the implementation and exemplary calculations for data leading to spacetimes...

متن کامل

Spacetimes admitting quasi-conformal curvature tensor

‎The object of the present paper is to study spacetimes admitting‎ ‎quasi-conformal curvature tensor‎. ‎At first we prove that a quasi-conformally flat spacetime is Einstein‎ ‎and hence it is of constant curvature and the energy momentum tensor of such a spacetime satisfying‎ ‎Einstein's field equation with cosmological constant is covariant constant‎. ‎Next‎, ‎we prove that if the perfect flui...

متن کامل

ar X iv : g r - qc / 0 40 80 62 v 1 1 8 A ug 2 00 4 Time asymmetric spacetimes near null and spatial infinity . I . Expansions of developments of conformally flat data

The Conformal Einstein equations and the representation of spatial infinity as a cylinder introduced by Friedrich are used to analyse the behaviour of the gravitational field near null and spatial infinity for the development of data which are asymptotically Euclidean, conformally flat and time asymmetric. Our analysis allows for initial data whose second fundamental form is more general than t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009